3-7m/(m^2-9)

Simple and best practice solution for 3-7m/(m^2-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3-7m/(m^2-9) equation:


D( m )

m^2-9 = 0

m^2-9 = 0

m^2-9 = 0

1*m^2 = 9 // : 1

m^2 = 9

m^2 = 9 // ^ 1/2

abs(m) = 3

m = 3 or m = -3

m in (-oo:-3) U (-3:3) U (3:+oo)

3-((7*m)/(m^2-9)) = 0

3-7*m*(m^2-9)^-1 = 0

(-7*m)/(m^2-9)+3 = 0

(-7*m)/(m^2-9)+(3*(m^2-9))/(m^2-9) = 0

3*(m^2-9)-7*m = 0

3*m^2-7*m-27 = 0

3*m^2-7*m-27 = 0

3*m^2-7*m-27 = 0

DELTA = (-7)^2-(-27*3*4)

DELTA = 373

DELTA > 0

m = (373^(1/2)+7)/(2*3) or m = (7-373^(1/2))/(2*3)

m = (373^(1/2)+7)/6 or m = (7-373^(1/2))/6

(m-((7-373^(1/2))/6))*(m-((373^(1/2)+7)/6)) = 0

((m-((7-373^(1/2))/6))*(m-((373^(1/2)+7)/6)))/(m^2-9) = 0

((m-((7-373^(1/2))/6))*(m-((373^(1/2)+7)/6)))/(m^2-9) = 0 // * m^2-9

(m-((7-373^(1/2))/6))*(m-((373^(1/2)+7)/6)) = 0

( m-((373^(1/2)+7)/6) )

m-((373^(1/2)+7)/6) = 0 // + (373^(1/2)+7)/6

m = (373^(1/2)+7)/6

( m-((7-373^(1/2))/6) )

m-((7-373^(1/2))/6) = 0 // + (7-373^(1/2))/6

m = (7-373^(1/2))/6

m in { (373^(1/2)+7)/6, (7-373^(1/2))/6 }

See similar equations:

| 7-3m-9-3m= | | -3/8-7/8= | | 26(y^2)-256(y)+648=0 | | 2(2r-1)+30=3(r+7) | | 9x+2-3x=-17+x | | (2c-5)*(7c+2)= | | (2c-5)(7c+2)= | | 1.5x-4=10 | | 27=h+8 | | 102=p+130 | | Z+22=-96 | | 2x^2+23x-4.9=0 | | .1=(x/300)^(1.4/.4) | | 52x+109=237+45x | | (x-10)+(4x-25)+(x+5)=180 | | x=78x27/31 | | X-0.25x=915 | | 17x+4=48 | | 4x+11=32 | | 2x^2=-4x+6 | | 7=4x+19 | | 10=-2/9y | | 10x+8y=-19 | | X1/x | | 5-3(2x-3)=4-2(5x-3)+7x | | 4/25=1/5x | | 14=1.8x+32 | | 14/3^2 | | -4-2/3 | | -4-(2/3)^2 | | 4x^2+4x-180=0 | | 1270=600(1+r*1) |

Equations solver categories